1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
import math import matplotlib import matplotlib.pyplot as plt import numpy as np import kaldi_io from utils import *
targets_list = ['Z', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'O'] targets_mapping = {} for i, x in enumerate(targets_list): targets_mapping[x] = i
def plot_loss(avg_loss, filename): fig = plt.figure(figsize=(20, 10)) plt.plot(avg_loss) plt.xlabel('epochs') plt.ylabel('loss') plt.savefig(filename) plt.show()
class Layer(object): def forward(self, input): ''' Forward function by input Args: input: input, B * N matrix, B for batch size Returns: output when applied this layer ''' raise 'Not implement error'
def backward(self, input, output, d_output): ''' Compute gradient of this layer's input by (input, output, d_output) as well as compute the gradient of the parameter of this layer Args: input: input of this layer output: output of this layer d_output: accumulated gradient from final output to this layer's output Returns: accumulated gradient from final output to this layer's input ''' raise 'Not implement error'
def set_learning_rate(self, lr): ''' Set learning rate of this layer''' self.learning_rate = lr
def update(self): ''' Update this layers parameter if it has or do nothing '''
class ReLU(Layer): def forward(self, input): tem_mat = np.maximum(0, input) assert (tem_mat.shape == input.shape) return tem_mat.T
def backward(self, input, output, d_output): d_mat = np.array(d_output, copy=True) d_mat[input <= 0] = 0 assert (d_mat.shape == input.shape) return d_mat.T
class FullyConnect(Layer): def __init__(self, in_dim, out_dim): self.w = np.random.randn(out_dim, in_dim) * np.sqrt(2.0 / in_dim) self.b = np.zeros((out_dim, 1)) self.dw = np.zeros((out_dim, in_dim)) self.db = np.zeros((out_dim, 1))
def forward(self, input): out_mat = np.dot(self.w, input.T) + self.b assert out_mat.shape == (self.w.shape[0], input.shape[0]) return out_mat
def backward(self, input, output, d_output): batch_size = input.shape[0] in_diff = None self.dw = np.dot(d_output, input) / batch_size self.db = np.sum(d_output, axis=1, keepdims=True) / batch_size outt_mat = np.dot(self.w.T, d_output)
assert (outt_mat.shape == input.T.shape) assert (self.dw.shape == self.w.shape) assert (self.db.shape == self.b.shape) in_diff = outt_mat.T self.dw = self.dw / batch_size self.db = self.db / batch_size return in_diff
def update(self): self.w = self.w - self.learning_rate * self.dw self.b = self.b - self.learning_rate * self.db
class Softmax(Layer): def forward(self, input): _input = input.T row_max = _input.max(axis=1).reshape(_input.shape[0], 1) x = _input - row_max return np.exp(x) / np.sum(np.exp(x), axis=1).reshape(x.shape[0], 1)
def backward(self, input, output, d_output): ''' Directly return the d_output as we show below, the grad is to the activation(input) of softmax ''' return d_output
class DNN(object): def __init__(self, in_dim, out_dim, hidden_dim, num_hidden): self.layers = [] self.layers.append(FullyConnect(in_dim, hidden_dim)) self.layers.append(ReLU()) for i in range(num_hidden): self.layers.append(FullyConnect(hidden_dim, hidden_dim)) self.layers.append(ReLU()) self.layers.append(FullyConnect(hidden_dim, out_dim)) self.layers.append(Softmax())
def set_learning_rate(self, lr): for layer in self.layers: layer.set_learning_rate(lr)
def forward(self, input): self.forward_buf = [] out = input self.forward_buf.append(out) for i in range(len(self.layers)): out = self.layers[i].forward(out) self.forward_buf.append(out) assert (len(self.forward_buf) == len(self.layers) + 1) return out
def backward(self, grad): ''' Args: grad: the grad is to the activation before softmax ''' self.backward_buf = [None] * len(self.layers) self.backward_buf[len(self.layers) - 1] = grad for i in range(len(self.layers) - 2, -1, -1): grad = self.layers[i].backward(self.forward_buf[i], self.forward_buf[i + 1], self.backward_buf[i + 1].T) self.backward_buf[i] = grad
def update(self): for layer in self.layers: layer.update()
def one_hot(labels, total_label): output = np.zeros((labels.shape[0], total_label)) for i in range(labels.shape[0]): output[i][labels[i]] = 1.0 return output
def train(dnn): utt2feat, utt2target = read_feats_and_targets('train/feats.scp', 'train/text') inputs, labels = build_input(targets_mapping, utt2feat, utt2target) num_samples = inputs.shape[0] permute = np.random.permutation(num_samples) inputs = inputs[permute] labels = labels[permute] num_epochs = 200 batch_size = 100 avg_loss = np.zeros(num_epochs) for i in range(num_epochs): cur = 0 while cur < num_samples: end = min(cur + batch_size, num_samples) input = inputs[cur:end] label = labels[cur:end] out = dnn.forward(input) one_hot_label = one_hot(label, out.shape[1]) loss = -np.sum(np.log(out + 1e-20) * one_hot_label) / out.shape[0] grad = out - one_hot_label dnn.backward(grad) dnn.update() print('Epoch {} num_samples {} loss {}'.format(i, cur, loss)) avg_loss[i] += loss cur += batch_size avg_loss[i] /= math.ceil(num_samples / batch_size) plot_loss(avg_loss, 'loss.png')
def test(dnn): utt2feat, utt2target = read_feats_and_targets('test/feats.scp', 'test/text') total = len(utt2feat) correct = 0 for utt in utt2feat: t = utt2target[utt] ark = utt2feat[utt] mat = kaldi_io.read_mat(ark) mat = splice(mat, 5, 5) posterior = dnn.forward(mat) posterior = np.sum(posterior, axis=0) / float(mat.shape[0]) predict = targets_list[np.argmax(posterior)] if t == predict: correct += 1 print('label: {} predict: {}'.format(t, predict)) print('Acc: {}'.format(float(correct) / total))
def main(): np.random.seed(777) dnn = DNN(429, 11, 128, 1) dnn.set_learning_rate(1e-2) train(dnn) test(dnn)
if __name__ == '__main__': main()
|