1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
| steps/align_fmllr.sh --nj 8 --cmd run.pl data/mfcc/train data/lang exp/tri4b exp/tri4b_ali tree-info exp/tri4b/tree tree-info exp/tri4b/tree steps/align_fmllr.sh: feature type is lda steps/align_fmllr.sh: compiling training graphs make-h-transducer --disambig-syms-out=exp/tri4b/graph_word/disambig_tid.int --transition-scale=1.0 data/graph/lang/tmp/ilabels_3_1 exp/tri4b/tree exp/tri4b/final.mdl fstrmsymbols exp/tri4b/graph_word/disambig_tid.int fstrmepslocal fstminimizeencoded fstdeterminizestar --use-log=true fsttablecompose exp/tri4b/graph_word/Ha.fst data/graph/lang/tmp/CLG_3_1.fst steps/align_fmllr.sh: aligning data in data/mfcc/train using exp/tri4b/final.alimdl and speaker-independent features. steps/align_fmllr.sh: computing fMLLR transforms steps/align_fmllr.sh: doing final alignment. ERROR: VectorFst::Read: Read failed: <unspecified> ERROR (fstdeterminizestar[5.5.1050~1-0fb50]:ReadFstKaldi():kaldi-fst-io.cc:40) Could not read fst from standard input
[ Stack-Trace: ] /home/baixf/kaldi/src/lib/libkaldi-base.so(kaldi::MessageLogger::LogMessage() const+0x70c) [0x7f4d1b6ad1ce] fstdeterminizestar(kaldi::MessageLogger::LogAndThrow::operator=(kaldi::MessageLogger const&)+0x25) [0x55ab2291f59d] /home/baixf/kaldi/src/lib/libkaldi-fstext.so(fst::ReadFstKaldi(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)+0x370) [0x7f4d1b711680] fstdeterminizestar(main+0x244) [0x55ab2291d47c] /lib/x86_64-linux-gnu/libc.so.6(+0x29d90) [0x7f4d1afb7d90] /lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0x80) [0x7f4d1afb7e40] fstdeterminizestar(_start+0x25) [0x55ab2291d165]
kaldi::KaldiFatalErrorERROR: FstHeader::Read: Bad FST header: - ERROR (fstrmsymbols[5.5.1050~1-0fb50]:ReadFstKaldiGeneric():kaldi-fst-io.cc:59) Reading FST: error reading FST header from standard input
[ Stack-Trace: ] /home/baixf/kaldi/src/lib/libkaldi-base.so(kaldi::MessageLogger::LogMessage() const+0x70c) [0x7f1cacd2d1ce] fstrmsymbols(kaldi::MessageLogger::LogAndThrow::operator=(kaldi::MessageLogger const&)+0x25) [0x55761aba4761] /home/baixf/kaldi/src/lib/libkaldi-fstext.so(fst::ReadFstKaldiGeneric(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, bool)+0x1c5) [0x7f1cacd90bd1] fstrmsymbols(main+0x30d) [0x55761aba3bb6] /lib/x86_64-linux-gnu/libc.so.6(+0x29d90) [0x7f1cac71ed90] /lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0x80) [0x7f1cac71ee40] fstrmsymbols(_start+0x25) [0x55761aba37e5]
kaldi::KaldiFatalErrorERROR: FstHeader::Read: Bad FST header: - ERROR (fstrmepslocal[5.5.1050~1-0fb50]:ReadFstKaldi():kaldi-fst-io.cc:35) Reading FST: error reading FST header from standard input
[ Stack-Trace: ] /home/baixf/kaldi/src/lib/libkaldi-base.so(kaldi::MessageLogger::LogMessage() const+0x70c) [0x7fd966e901ce] /home/baixf/kaldi/src/lib/libkaldi-fstext.so(kaldi::MessageLogger::LogAndThrow::operator=(kaldi::MessageLogger const&)+0x25) [0x7fd966ef55fd] /home/baixf/kaldi/src/lib/libkaldi-fstext.so(fst::ReadFstKaldi(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)+0x1ba) [0x7fd966ef44ca] fstrmepslocal(main+0x1b3) [0x56524d4f7b7c] /lib/x86_64-linux-gnu/libc.so.6(+0x29d90) [0x7fd96679ad90] /lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0x80) [0x7fd96679ae40] fstrmepslocal(_start+0x25) [0x56524d4f7905]
kaldi::KaldiFatalErrorERROR: FstHeader::Read: Bad FST header: - ERROR (fstminimizeencoded[5.5.1050~1-0fb50]:ReadFstKaldi():kaldi-fst-io.cc:35) Reading FST: error reading FST header from standard input
[ Stack-Trace: ] /home/baixf/kaldi/src/lib/libkaldi-base.so(kaldi::MessageLogger::LogMessage() const+0x70c) [0x7f2f0aba41ce] /home/baixf/kaldi/src/lib/libkaldi-fstext.so(kaldi::MessageLogger::LogAndThrow::operator=(kaldi::MessageLogger const&)+0x25) [0x7f2f0ac095fd] /home/baixf/kaldi/src/lib/libkaldi-fstext.so(fst::ReadFstKaldi(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)+0x1ba) [0x7f2f0ac084ca] fstminimizeencoded(main+0x111) [0x5628315c1b5a] /lib/x86_64-linux-gnu/libc.so.6(+0x29d90) [0x7f2f0a595d90] /lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0x80) [0x7f2f0a595e40] fstminimizeencoded(_start+0x25) [0x5628315c1985]
kaldi::KaldiFatalErrorsteps/align_fmllr.sh: done aligning data. steps/diagnostic/analyze_alignments.sh --cmd run.pl data/lang exp/tri4b_ali steps/diagnostic/analyze_alignments.sh: see stats in exp/tri4b_ali/log/analyze_alignments.log 3 warnings in exp/tri4b_ali/log/fmllr.*.log 55 warnings in exp/tri4b_ali/log/align_pass2.*.log 47 warnings in exp/tri4b_ali/log/align_pass1.*.log steps/align_fmllr.sh --nj 8 --cmd run.pl data/mfcc/dev data/lang exp/tri4b exp/tri4b_ali_cv steps/align_fmllr.sh: feature type is lda steps/align_fmllr.sh: compiling training graphs steps/align_fmllr.sh: aligning data in data/mfcc/dev using exp/tri4b/final.alimdl and speaker-independent features. steps/align_fmllr.sh: computing fMLLR transforms steps/align_fmllr.sh: doing final alignment. steps/align_fmllr.sh: done aligning data. steps/diagnostic/analyze_alignments.sh --cmd run.pl data/lang exp/tri4b_ali_cv steps/diagnostic/analyze_alignments.sh: see stats in exp/tri4b_ali_cv/log/analyze_alignments.log 5 warnings in exp/tri4b_ali_cv/log/align_pass1.*.log 6 warnings in exp/tri4b_ali_cv/log/align_pass2.*.log DNN training: stage 0: feature generation producing fbank for train steps/make_fbank.sh --nj 8 --cmd run.pl data/fbank/train exp/make_fbank/train fbank/train utils/validate_data_dir.sh: Successfully validated data-directory data/fbank/train steps/make_fbank.sh: [info]: no segments file exists: assuming wav.scp indexed by utterance. steps/make_fbank.sh: Succeeded creating filterbank features for train steps/compute_cmvn_stats.sh data/fbank/train exp/fbank_cmvn/train fbank/train Succeeded creating CMVN stats for train producing fbank for dev steps/make_fbank.sh --nj 8 --cmd run.pl data/fbank/dev exp/make_fbank/dev fbank/dev utils/validate_data_dir.sh: Successfully validated data-directory data/fbank/dev steps/make_fbank.sh: [info]: no segments file exists: assuming wav.scp indexed by utterance. steps/make_fbank.sh: Succeeded creating filterbank features for dev steps/compute_cmvn_stats.sh data/fbank/dev exp/fbank_cmvn/dev fbank/dev Succeeded creating CMVN stats for dev producing fbank for test Succeeded creating CMVN stats for test producing test_fbank_phone # steps/nnet/train.sh --copy_feats false --cmvn-opts "--norm-means=true --norm-vars=false" --hid-layers 4 --hid-dim 1024 --learn-rate 0.008 data/fbank/train data/fbank/dev data/lang exp/tri4b_ali exp/tri4b_ali_cv exp/tri4b_dnn # Started at Wed Aug 31 17:50:20 CST 2022 # steps/nnet/train.sh --copy_feats false --cmvn-opts --norm-means=true --norm-vars=false --hid-layers 4 --hid-dim 1024 --learn-rate 0.008 data/fbank/train data/fbank/dev data/lang exp/tri4b_ali exp/tri4b_ali_cv exp/tri4b_dnn
# INFO steps/nnet/train.sh : Training Neural Network dir : exp/tri4b_dnn Train-set : data/fbank/train 10000, exp/tri4b_ali CV-set : data/fbank/dev 893 exp/tri4b_ali_cv
LOG ([5.5.1050~1-0fb50]:main():cuda-gpu-available.cc:61)
# WARNING ([5.5.1050~1-0fb50]:SelectGpuId():cu-device.cc:243) Not in compute-exclusive mode. Suggestion: use 'nvidia-smi -c 3' to set compute exclusive mode LOG ([5.5.1050~1-0fb50]:SelectGpuIdAuto():cu-device.cc:438) Selecting from 1 GPUs LOG ([5.5.1050~1-0fb50]:SelectGpuIdAuto():cu-device.cc:453) cudaSetDevice(0): NVIDIA GeForce GTX 1050 free:3992M, used:47M, total:4040M, free/total:0.98815 LOG ([5.5.1050~1-0fb50]:SelectGpuIdAuto():cu-device.cc:501) Device: 0, mem_ratio: 0.98815 LOG ([5.5.1050~1-0fb50]:SelectGpuId():cu-device.cc:382) Trying to select device: 0 LOG ([5.5.1050~1-0fb50]:SelectGpuIdAuto():cu-device.cc:511) Success selecting device 0 free mem ratio: 0.98815 LOG ([5.5.1050~1-0fb50]:FinalizeActiveGpu():cu-device.cc:338) The active GPU is [0]: NVIDIA GeForce GTX 1050free:3788M, used:251M, total:4040M, free/total:0.937657 version 6.1 #
# #
# PREPARING ALIGNMENTS Using PDF targets from dirs 'exp/tri4b_ali' 'exp/tri4b_ali_cv' hmm-info exp/tri4b_ali/final.mdl copy-transition-model --binary=false exp/tri4b_ali/final.mdl exp/tri4b_dnn/final.mdl LOG (copy-transition-model[5.5.1050~1-0fb50]:main():copy-transition-model.cc:62) Copied transition model.
# PREPARING FEATURES # + 'apply-cmvn' with '--norm-means=true --norm-vars=false' using statistics : data/fbank/train/cmvn.scp, data/fbank/dev/cmvn.scp feat-to-dim 'ark:copy-feats scp:exp/tri4b_dnn/train.scp.10k ark:- | apply-cmvn --norm-means=true --norm-vars=false --utt2spk=ark:data/fbank/train/utt2spk scp:data/fbank/train/cmvn.scp ark:- ark:- |' - copy-feats scp:exp/tri4b_dnn/train.scp.10k ark:- apply-cmvn --norm-means=true --norm-vars=false --utt2spk=ark:data/fbank/train/utt2spk scp:data/fbank/train/cmvn.scp ark:- ark:- WARNING (feat-to-dim[5.5.1050~1-0fb50]:Close():kaldi-io.cc:515) Pipe copy-feats scp:exp/tri4b_dnn/train.scp.10k ark:- | apply-cmvn --norm-means=true --norm-vars=false --utt2spk=ark:data/fbank/train/utt2spk scp:data/fbank/train/cmvn.scp ark:- ark:- | had nonzero return status 36096 # feature dim : 40 (input of 'feature_transform') # + default 'feature_transform_proto' with splice +/-5 frames, nnet-initialize --binary=false exp/tri4b_dnn/splice5.proto exp/tri4b_dnn/tr_splice5.nnet VLOG[1] (nnet-initialize[5.5.1050~1-0fb50]:Init():nnet-nnet.cc:314) <Splice> <InputDim> 40 <OutputDim> 440 <BuildVector> -5:5 </BuildVector> LOG (nnet-initialize[5.5.1050~1-0fb50]:main():nnet-initialize.cc:63) Written initialized model to exp/tri4b_dnn/tr_splice5.nnet # feature type : plain # compute normalization stats from 10k sentences compute-cmvn-stats ark:- exp/tri4b_dnn/cmvn-g.stats nnet-forward --print-args=true --use-gpu=yes exp/tri4b_dnn/tr_splice5.nnet 'ark:copy-feats scp:exp/tri4b_dnn/train.scp.10k ark:- | apply-cmvn --norm-means=true --norm-vars=false --utt2spk=ark:data/fbank/train/utt2spk scp:data/fbank/train/cmvn.scp ark:- ark:- |' ark:- WARNING (nnet-forward[5.5.1050~1-0fb50]:SelectGpuId():cu-device.cc:243) Not in compute-exclusive mode. Suggestion: use 'nvidia-smi -c 3' to set compute exclusive mode LOG (nnet-forward[5.5.1050~1-0fb50]:SelectGpuIdAuto():cu-device.cc:438) Selecting from 1 GPUs LOG (nnet-forward[5.5.1050~1-0fb50]:SelectGpuIdAuto():cu-device.cc:453) cudaSetDevice(0): NVIDIA GeForce GTX 1050 free:3992M, used:47M, total:4040M, free/total:0.98815 LOG (nnet-forward[5.5.1050~1-0fb50]:SelectGpuIdAuto():cu-device.cc:501) Device: 0, mem_ratio: 0.98815 LOG (nnet-forward[5.5.1050~1-0fb50]:SelectGpuId():cu-device.cc:382) Trying to select device: 0 LOG (nnet-forward[5.5.1050~1-0fb50]:SelectGpuIdAuto():cu-device.cc:511) Success selecting device 0 free mem ratio: 0.98815 LOG (nnet-forward[5.5.1050~1-0fb50]:FinalizeActiveGpu():cu-device.cc:338) The active GPU is [0]: NVIDIA GeForce GTX 1050 free:3788M, used:251M, total:4040M, free/total:0.937657 version 6.1 copy-feats scp:exp/tri4b_dnn/train.scp.10k ark:- apply-cmvn --norm-means=true --norm-vars=false --utt2spk=ark:data/fbank/train/utt2spk scp:data/fbank/train/cmvn.scp ark:- ark:- LOG (copy-feats[5.5.1050~1-0fb50]:main():copy-feats.cc:143) Copied 10000 feature matrices. LOG (apply-cmvn[5.5.1050~1-0fb50]:main():apply-cmvn.cc:162) Applied cepstral mean normalization to 10000 utterances, errors on 0 LOG (nnet-forward[5.5.1050~1-0fb50]:main():nnet-forward.cc:192) Done 10000 files in 0.841963min, (fps 181658) LOG (compute-cmvn-stats[5.5.1050~1-0fb50]:main():compute-cmvn-stats.cc:168) Wrote global CMVN stats to exp/tri4b_dnn/cmvn-g.stats LOG (compute-cmvn-stats[5.5.1050~1-0fb50]:main():compute-cmvn-stats.cc:171) Done accumulating CMVN stats for 10000 utterances; 0 had errors. # + normalization of NN-input at 'exp/tri4b_dnn/tr_splice5_cmvn-g.nnet' nnet-concat --binary=false exp/tri4b_dnn/tr_splice5.nnet 'cmvn-to-nnet --std-dev=1.0 exp/tri4b_dnn/cmvn-g.stats -|' exp/tri4b_dnn/tr_splice5_cmvn-g.nnet LOG (nnet-concat[5.5.1050~1-0fb50]:main():nnet-concat.cc:53) Reading exp/tri4b_dnn/tr_splice5.nnet LOG (nnet-concat[5.5.1050~1-0fb50]:main():nnet-concat.cc:65) Concatenating cmvn-to-nnet --std-dev=1.0 exp/tri4b_dnn/cmvn-g.stats -| cmvn-to-nnet --std-dev=1.0 exp/tri4b_dnn/cmvn-g.stats - LOG (cmvn-to-nnet[5.5.1050~1-0fb50]:main():cmvn-to-nnet.cc:114) Written cmvn in 'nnet1' model to: - LOG (nnet-concat[5.5.1050~1-0fb50]:main():nnet-concat.cc:82) Written model to exp/tri4b_dnn/tr_splice5_cmvn-g.nnet
# nnet-info exp/tri4b_dnn/tr_splice5_cmvn-g.nnet num-components 3 input-dim 40 output-dim 440 number-of-parameters 0.00088 millions component 1 : <Splice>, input-dim 40, output-dim 440, frame_offsets [ -5 -4 -3 -2 -1 0 1 2 3 4 5 ] component 2 : <AddShift>, input-dim 440, output-dim 440, shift_data ( min -0.00404477, max 0.0024458, mean -0.000288983, stddev 0.000940905, skewness -0.818492, kurtosis 1.721 ) , lr-coef 0 component 3 : <Rescale>, input-dim 440, output-dim 440, scale_data ( min 0.236916, max 0.392197, mean 0.289203, stddev 0.0389445, skewness 0.623488, kurtosis -0.290958 ) , lr-coef 0 LOG (nnet-info[5.5.1050~1-0fb50]:main():nnet-info.cc:57) Printed info about exp/tri4b_dnn/tr_splice5_cmvn-g.nnet #
# NN-INITIALIZATION # getting input/output dims : feat-to-dim 'ark:copy-feats scp:exp/tri4b_dnn/train.scp.10k ark:- | apply-cmvn --norm-means=true --norm-vars=false --utt2spk=ark:data/fbank/train/utt2spk scp:data/fbank/train/cmvn.scp ark:- ark:- | nnet-forward "exp/tri4b_dnn/final.feature_transform" ark:- ark:- |' - copy-feats scp:exp/tri4b_dnn/train.scp.10k ark:- apply-cmvn --norm-means=true --norm-vars=false --utt2spk=ark:data/fbank/train/utt2spk scp:data/fbank/train/cmvn.scp ark:- ark:- nnet-forward exp/tri4b_dnn/final.feature_transform ark:- ark:- LOG (nnet-forward[5.5.1050~1-0fb50]:SelectGpuId():cu-device.cc:168) Manually selected to compute on CPU. WARNING (feat-to-dim[5.5.1050~1-0fb50]:Close():kaldi-io.cc:515) Pipe copy-feats scp:exp/tri4b_dnn/train.scp.10k ark:- | apply-cmvn --norm-means=true --norm-vars=false --utt2spk=ark:data/fbank/train/utt2spk scp:data/fbank/train/cmvn.scp ark:- ark:- | nnet-forward "exp/tri4b_dnn/final.feature_transform" ark:- ark:- | had nonzero return status 36096 # genrating network prototype exp/tri4b_dnn/nnet.proto # initializing the NN 'exp/tri4b_dnn/nnet.proto' -> 'exp/tri4b_dnn/nnet.init' nnet-initialize --seed=777 exp/tri4b_dnn/nnet.proto exp/tri4b_dnn/nnet.init VLOG[1] (nnet-initialize[5.5.1050~1-0fb50]:Init():nnet-nnet.cc:314) <AffineTransform> <InputDim> 440 <OutputDim> 1024 <BiasMean> -2.000000 <BiasRange> 4.000000 <ParamStddev> 0.037344 <MaxNorm> 0.000000 VLOG[1] (nnet-initialize[5.5.1050~1-0fb50]:Init():nnet-nnet.cc:314) <Sigmoid> <InputDim> 1024 <OutputDim> 1024 VLOG[1] (nnet-initialize[5.5.1050~1-0fb50]:Init():nnet-nnet.cc:314) <AffineTransform> <InputDim> 1024 <OutputDim> 1024 <BiasMean> -2.000000 <BiasRange> 4.000000 <ParamStddev> 0.109375 <MaxNorm> 0.000000 VLOG[1] (nnet-initialize[5.5.1050~1-0fb50]:Init():nnet-nnet.cc:314) <Sigmoid> <InputDim> 1024 <OutputDim> 1024 VLOG[1] (nnet-initialize[5.5.1050~1-0fb50]:Init():nnet-nnet.cc:314) <AffineTransform> <InputDim> 1024 <OutputDim> 1024 <BiasMean> -2.000000 <BiasRange> 4.000000 <ParamStddev> 0.109375 <MaxNorm> 0.000000 VLOG[1] (nnet-initialize[5.5.1050~1-0fb50]:Init():nnet-nnet.cc:314) <Sigmoid> <InputDim> 1024 <OutputDim> 1024 VLOG[1] (nnet-initialize[5.5.1050~1-0fb50]:Init():nnet-nnet.cc:314) <AffineTransform> <InputDim> 1024 <OutputDim> 1024 <BiasMean> -2.000000 <BiasRange> 4.000000 <ParamStddev> 0.109375 <MaxNorm> 0.000000 VLOG[1] (nnet-initialize[5.5.1050~1-0fb50]:Init():nnet-nnet.cc:314) <Sigmoid> <InputDim> 1024 <OutputDim> 1024 VLOG[1] (nnet-initialize[5.5.1050~1-0fb50]:Init():nnet-nnet.cc:314) <AffineTransform> <InputDim> 1024 <OutputDim> 3392 <BiasMean> 0.000000 <BiasRange> 0.000000 <ParamStddev> 0.074485 <LearnRateCoef> 1.000000 <BiasLearnRateCoef> 0.100000 VLOG[1] (nnet-initialize[5.5.1050~1-0fb50]:Init():nnet-nnet.cc:314) <Softmax> <InputDim> 3392 <OutputDim> 3392 LOG (nnet-initialize[5.5.1050~1-0fb50]:main():nnet-initialize.cc:63) Written initialized model to exp/tri4b_dnn/nnet.init
# RUNNING THE NN-TRAINING SCHEDULER steps/nnet/train_scheduler.sh --feature-transform exp/tri4b_dnn/final.feature_transform --learn-rate 0.008 exp/tri4b_dnn/nnet.init ark:copy-feats scp:exp/tri4b_dnn/train.scp ark:- | apply-cmvn --norm-means=true --norm-vars=false --utt2spk=ark:data/fbank/train/utt2spk scp:data/fbank/train/cmvn.scp ark:- ark:- | ark:copy-feats scp:exp/tri4b_dnn/cv.scp ark:- | apply-cmvn --norm-means=true --norm-vars=false --utt2spk=ark:data/fbank/dev/utt2spk scp:data/fbank/dev/cmvn.scp ark:- ark:- | ark:ali-to-pdf exp/tri4b_ali/final.mdl "ark:gunzip -c exp/tri4b_ali/ali.*.gz |" ark:- | ali-to-post ark:- ark:- | ark:ali-to-pdf exp/tri4b_ali/final.mdl "ark:gunzip -c exp/tri4b_ali_cv/ali.*.gz |" ark:- | ali-to-post ark:- ark:- | exp/tri4b_dnn CROSSVAL PRERUN AVG.LOSS 8.4100 (Xent), ITERATION 01: TRAIN AVG.LOSS 2.0844, (lrate0.008), CROSSVAL AVG.LOSS 2.2329, nnet accepted (nnet_iter01_learnrate0.008_tr2.0844_cv2.2329) ITERATION 02: TRAIN AVG.LOSS 1.4095, (lrate0.008), CROSSVAL AVG.LOSS 2.0038, nnet accepted (nnet_iter02_learnrate0.008_tr1.4095_cv2.0038) ITERATION 03: TRAIN AVG.LOSS 1.2454, (lrate0.008), CROSSVAL AVG.LOSS 1.9345, nnet accepted (nnet_iter03_learnrate0.008_tr1.2454_cv1.9345) ITERATION 04: steps/diagnostic/analyze_lats.sh --cmd run.pl --mem 4G exp/mono/graph_word exp/mono/decode_test_word steps/diagnostic/analyze_lats.sh: see stats in exp/mono/decode_test_word/log/analyze_alignments.log Overall, lattice depth (10,50,90-percentile)=(3,36,179) and mean=70.2 steps/diagnostic/analyze_lats.sh: see stats in exp/mono/decode_test_word/log/analyze_lattice_depth_stats.log local/score.sh --cmd run.pl --mem 4G data/mfcc/test exp/mono/graph_word exp/mono/decode_test_word local/score.sh: scoring with word insertion penalty=0.0,0.5,1.0 Traceback (most recent call last): File "local/wer_output_filter", line 15, in <module> v = v.encode('utf-8').decode('utf-8') UnicodeDecodeError: 'ascii' codec can't decode byte 0xe4 in position 0: ordinal not in range(128) steps/decode.sh: Error: scoring failed. (ignore by '--skip-scoring true') TRAIN AVG.LOSS 1.1448, (lrate0.008), CROSSVAL AVG.LOSS 1.9161, nnet accepted (nnet_iter04_learnrate0.008_tr1.1448_cv1.9161) ITERATION 05: TRAIN AVG.LOSS 1.0634, (lrate0.004), CROSSVAL AVG.LOSS 1.7115, nnet accepted (nnet_iter05_learnrate0.004_tr1.0634_cv1.7115) ITERATION 06: TRAIN AVG.LOSS 1.0256, (lrate0.002), CROSSVAL AVG.LOSS 1.5842, nnet accepted (nnet_iter06_learnrate0.002_tr1.0256_cv1.5842) ITERATION 07: TRAIN AVG.LOSS 1.0191, (lrate0.001), CROSSVAL AVG.LOSS 1.5023, nnet accepted (nnet_iter07_learnrate0.001_tr1.0191_cv1.5023) ITERATION 08: TRAIN AVG.LOSS 1.0233, (lrate0.0005), CROSSVAL AVG.LOSS 1.4487, nnet accepted (nnet_iter08_learnrate0.0005_tr1.0233_cv1.4487) ITERATION 09: TRAIN AVG.LOSS 1.0284, (lrate0.00025), CROSSVAL AVG.LOSS 1.4156, nnet accepted (nnet_iter09_learnrate0.00025_tr1.0284_cv1.4156) ITERATION 10: TRAIN AVG.LOSS 1.0315, (lrate0.000125), CROSSVAL AVG.LOSS 1.3976, nnet accepted (nnet_iter10_learnrate0.000125_tr1.0315_cv1.3976) ITERATION 11: TRAIN AVG.LOSS 1.0327, (lrate6.25e-05), CROSSVAL AVG.LOSS 1.3882, nnet accepted (nnet_iter11_learnrate6.25e-05_tr1.0327_cv1.3882) ITERATION 12: TRAIN AVG.LOSS 1.0327, (lrate3.125e-05), CROSSVAL AVG.LOSS 1.3837, nnet accepted (nnet_iter12_learnrate3.125e-05_tr1.0327_cv1.3837) ITERATION 13: TRAIN AVG.LOSS 1.0323, (lrate1.5625e-05), CROSSVAL AVG.LOSS 1.3816, nnet accepted (nnet_iter13_learnrate1.5625e-05_tr1.0323_cv1.3816) ITERATION 14: TRAIN AVG.LOSS 1.0318, (lrate7.8125e-06), CROSSVAL AVG.LOSS 1.3806, nnet accepted (nnet_iter14_learnrate7.8125e-06_tr1.0318_cv1.3806) finished, too small rel. improvement 0.000752729 steps/nnet/train_scheduler.sh: Succeeded training the Neural Network : 'exp/tri4b_dnn/final.nnet' steps/nnet/train.sh: Successfuly finished. 'exp/tri4b_dnn' steps/nnet/decode.sh --nj 8 --cmd run.pl --mem 4G --srcdir exp/tri4b_dnn --config conf/decode_dnn.config --acwt 0.1 exp/tri4b/graph_phone data/fbank/test_phone exp/tri4b_dnn/decode_test_phone steps/nnet/align.sh --nj 8 --cmd run.pl data/fbank/train data/lang exp/tri4b_dnn exp/tri4b_dnn_ali steps/nnet/decode.sh --nj 8 --cmd run.pl --mem 4G --srcdir exp/tri4b_dnn --config conf/decode_dnn.config --acwt 0.1 exp/tri4b/graph_word data/fbank/test exp/tri4b_dnn/decode_test_word steps/nnet/decode.sh: missing file exp/tri4b/graph_phone/HCLG.fst steps/nnet/decode.sh: missing file exp/tri4b/graph_word/HCLG.fst steps/nnet/align.sh: aligning data 'data/fbank/train' using nnet/model 'exp/tri4b_dnn', putting alignments in 'exp/tri4b_dnn_ali' # Accounting: time=6894 threads=1 # Ended (code 0) at Wed Aug 31 19:45:14 CST 2022, elapsed time 6894 seconds steps/nnet/align.sh: done aligning data. steps/nnet/make_denlats.sh --nj 8 --cmd run.pl --mem 4G --config conf/decode_dnn.config --acwt 0.1 data/fbank/train data/lang exp/tri4b_dnn exp/tri4b_dnn_denlats Making unigram grammar FST in exp/tri4b_dnn_denlats/lang sym2int.pl: replacing l with 2 sym2int.pl: replacing = with 2 sym2int.pl: replacing l with 2 sym2int.pl: replacing = with 2 sym2int.pl: replacing l with 2 sym2int.pl: replacing = with 2 sym2int.pl: replacing l with 2 sym2int.pl: replacing = with 2 sym2int.pl: replacing l with 2 sym2int.pl: replacing = with 2 sym2int.pl: replacing l with 2 sym2int.pl: replacing = with 2 sym2int.pl: replacing l with 2 sym2int.pl: replacing = with 2 sym2int.pl: replacing l with 2 sym2int.pl: replacing = with 2 sym2int.pl: replacing l with 2 sym2int.pl: replacing = with 2 sym2int.pl: replacing l with 2 sym2int.pl: replacing = with 2 sym2int.pl: not warning for OOVs any more times ** Replaced 22 instances of OOVs with 2 Compiling decoding graph in exp/tri4b_dnn_denlats/dengraph tree-info exp/tri4b_dnn/tree tree-info exp/tri4b_dnn/tree fstpushspecial fstminimizeencoded fstdeterminizestar --use-log=true fsttablecompose exp/tri4b_dnn_denlats/lang/L_disambig.fst exp/tri4b_dnn_denlats/lang/G.fst fstisstochastic exp/tri4b_dnn_denlats/lang/tmp/LG.fst -0.0323879 -0.0325606 [info]: LG not stochastic. fstcomposecontext --context-size=3 --central-position=1 --read-disambig-syms=exp/tri4b_dnn_denlats/lang/phones/disambig.int --write-disambig-syms=exp/tri4b_dnn_denlats/lang/tmp/disambig_ilabels_3_1.int exp/tri4b_dnn_denlats/lang/tmp/ilabels_3_1.541227 exp/tri4b_dnn_denlats/lang/tmp/LG.fst fstisstochastic exp/tri4b_dnn_denlats/lang/tmp/CLG_3_1.fst 0 -0.0325606 [info]: CLG not stochastic. make-h-transducer --disambig-syms-out=exp/tri4b_dnn_denlats/dengraph/disambig_tid.int --transition-scale=1.0 exp/tri4b_dnn_denlats/lang/tmp/ilabels_3_1 exp/tri4b_dnn/tree exp/tri4b_dnn/final.mdl fsttablecompose exp/tri4b_dnn_denlats/dengraph/Ha.fst exp/tri4b_dnn_denlats/lang/tmp/CLG_3_1.fst fstminimizeencoded fstdeterminizestar --use-log=true fstrmepslocal fstrmsymbols exp/tri4b_dnn_denlats/dengraph/disambig_tid.int fstisstochastic exp/tri4b_dnn_denlats/dengraph/HCLGa.fst 0.661133 -0.0799874 HCLGa is not stochastic add-self-loops --self-loop-scale=0.1 --reorder=true exp/tri4b_dnn/final.mdl exp/tri4b_dnn_denlats/dengraph/HCLGa.fst steps/nnet/make_denlats.sh: generating denlats from data 'data/fbank/train', putting lattices in 'exp/tri4b_dnn_denlats' steps/nnet/make_denlats.sh: done generating denominator lattices. steps/nnet/train_mpe.sh --cmd run.pl --gpu 1 --num-iters 3 --acwt 0.1 --do-smbr false data/fbank/train data/lang exp/tri4b_dnn exp/tri4b_dnn_ali exp/tri4b_dnn_denlats exp/tri4b_dnn_mpe Pass 1 (learnrate 0.00001) TRAINING FINISHED; Time taken = 6.98081 min; processed 21905.1 frames per second. Done 9998 files, 2 with no reference alignments, 0 with no lattices, 0 with other errors. Overall average frame-accuracy is 0.977291 over 9174910 frames. Pass 2 (learnrate 1e-05) TRAINING FINISHED; Time taken = 7.42708 min; processed 20588.9 frames per second. Done 9998 files, 2 with no reference alignments, 0 with no lattices, 0 with other errors. Overall average frame-accuracy is 0.978551 over 9174910 frames. Pass 3 (learnrate 1e-05) TRAINING FINISHED; Time taken = 7.18205 min; processed 21291.3 frames per second. Done 9998 files, 2 with no reference alignments, 0 with no lattices, 0 with other errors. Overall average frame-accuracy is 0.979353 over 9174910 frames. MPE/sMBR training finished Re-estimating priors by forwarding 10k utterances from training set. steps/nnet/make_priors.sh --cmd run.pl --nj 8 data/fbank/train exp/tri4b_dnn_mpe Accumulating prior stats by forwarding 'data/fbank/train' with 'exp/tri4b_dnn_mpe' Succeeded creating prior counts 'exp/tri4b_dnn_mpe/prior_counts' from 'data/fbank/train' steps/nnet/train_mpe.sh: Done. 'exp/tri4b_dnn_mpe' steps/nnet/decode.sh --nj 8 --cmd run.pl --mem 4G --nnet exp/tri4b_dnn_mpe/3.nnet --config conf/decode_dnn.config --acwt 0.1 exp/tri4b/graph_phone data/fbank/test_phone exp/tri4b_dnn_mpe/decode_test_phone_it3 steps/nnet/decode.sh --nj 8 --cmd run.pl --mem 4G --nnet exp/tri4b_dnn_mpe/2.nnet --config conf/decode_dnn.config --acwt 0.1 exp/tri4b/graph_phone data/fbank/test_phone exp/tri4b_dnn_mpe/decode_test_phone_it2 steps/nnet/decode.sh --nj 8 --cmd run.pl --mem 4G --nnet exp/tri4b_dnn_mpe/2.nnet --config conf/decode_dnn.config --acwt 0.1 exp/tri4b/graph_word data/fbank/test exp/tri4b_dnn_mpe/decode_test_word_it2 steps/nnet/decode.sh --nj 8 --cmd run.pl --mem 4G --nnet exp/tri4b_dnn_mpe/1.nnet --config conf/decode_dnn.config --acwt 0.1 exp/tri4b/graph_word data/fbank/test exp/tri4b_dnn_mpe/decode_test_word_it1 steps/nnet/decode.sh --nj 8 --cmd run.pl --mem 4G --nnet exp/tri4b_dnn_mpe/1.nnet --config conf/decode_dnn.config --acwt 0.1 exp/tri4b/graph_phone data/fbank/test_phone exp/tri4b_dnn_mpe/decode_test_phone_it1 steps/nnet/decode.sh --nj 8 --cmd run.pl --mem 4G --nnet exp/tri4b_dnn_mpe/3.nnet --config conf/decode_dnn.config --acwt 0.1 exp/tri4b/graph_word data/fbank/test exp/tri4b_dnn_mpe/decode_test_word_it3 DAE: switching to per-utterance CMVN mode steps/nnet/decode.sh: missing file exp/tri4b/graph_phone/HCLG.fst steps/nnet/decode.sh: missing file exp/tri4b/graph_phone/HCLG.fst steps/nnet/decode.sh: missing file exp/tri4b/graph_word/HCLG.fst steps/nnet/decode.sh: missing file exp/tri4b/graph_word/HCLG.fst steps/nnet/decode.sh: missing file exp/tri4b/graph_word/HCLG.fst steps/nnet/decode.sh: missing file exp/tri4b/graph_phone/HCLG.fst steps/compute_cmvn_stats.sh data/fbank/train exp/fbank_cmvn/train.per_utt fbank/per_utt Succeeded creating CMVN stats for train steps/compute_cmvn_stats.sh data/fbank/dev exp/fbank_cmvn/dev.per_utt fbank/per_utt Succeeded creating CMVN stats for dev steps/compute_cmvn_stats.sh data/fbank/test exp/fbank_cmvn/test.per_utt fbank/per_utt Succeeded creating CMVN stats for test steps/compute_cmvn_stats.sh data/fbank/test_phone exp/fbank_cmvn/test_phone.per_utt fbank/per_utt Succeeded creating CMVN stats for test_phone DAE: generate training data... steps/make_fbank.sh --nj 8 --cmd run.pl data/dae/train exp/dae/gendata fbank/dae/train utils/validate_data_dir.sh: Successfully validated data-directory data/dae/train steps/make_fbank.sh: [info]: no segments file exists: assuming wav.scp indexed by utterance. steps/make_fbank.sh: Succeeded creating filterbank features for train steps/compute_cmvn_stats.sh data/dae/train exp/dae/cmvn fbank/dae/train Succeeded creating CMVN stats for train DAE: generating dev data... steps/make_fbank.sh --nj 8 --cmd run.pl data/dae/dev/0db exp/dae/gendata fbank/dae/dev/0db utils/validate_data_dir.sh: Successfully validated data-directory data/dae/dev/0db steps/make_fbank.sh: [info]: no segments file exists: assuming wav.scp indexed by utterance. steps/make_fbank.sh: Succeeded creating filterbank features for 0db steps/compute_cmvn_stats.sh data/dae/dev/0db exp/dae/cmvn fbank/dae/dev/0db Succeeded creating CMVN stats for 0db DAE: generating test data... producing fbanks for car steps/make_fbank.sh --nj 8 --cmd run.pl data/dae/test/0db/car exp/dae/gendata fbank/dae/test/0db/car utils/validate_data_dir.sh: Successfully validated data-directory data/dae/test/0db/car steps/make_fbank.sh: [info]: no segments file exists: assuming wav.scp indexed by utterance. steps/make_fbank.sh: Succeeded creating filterbank features for car generating cmvn for test data car steps/compute_cmvn_stats.sh data/dae/test/0db/car exp/dae/cmvn fbank/dae/test/0db/car Succeeded creating CMVN stats for car producing fbanks for white steps/make_fbank.sh --nj 8 --cmd run.pl data/dae/test/0db/white exp/dae/gendata fbank/dae/test/0db/white utils/validate_data_dir.sh: Successfully validated data-directory data/dae/test/0db/white steps/make_fbank.sh: [info]: no segments file exists: assuming wav.scp indexed by utterance. steps/make_fbank.sh: Succeeded creating filterbank features for white generating cmvn for test data white steps/compute_cmvn_stats.sh data/dae/test/0db/white exp/dae/cmvn fbank/dae/test/0db/white Succeeded creating CMVN stats for white producing fbanks for cafe steps/make_fbank.sh --nj 8 --cmd run.pl data/dae/test/0db/cafe exp/dae/gendata fbank/dae/test/0db/cafe utils/validate_data_dir.sh: Successfully validated data-directory data/dae/test/0db/cafe steps/make_fbank.sh: [info]: no segments file exists: assuming wav.scp indexed by utterance. steps/make_fbank.sh: Succeeded creating filterbank features for cafe generating cmvn for test data cafe steps/compute_cmvn_stats.sh data/dae/test/0db/cafe exp/dae/cmvn fbank/dae/test/0db/cafe Succeeded creating CMVN stats for cafe feat-to-dim scp:exp/tri4b_dnn_dae/tgt_feats.scp - num_fea = 40 nnet-concat exp/tri4b_dnn_dae/final.feature_transform exp/tri4b_dnn_dae/final.nnet exp/tri4b_dnn_mpe/final.feature_transform exp/tri4b_dnn_dae/dae.nnet LOG (nnet-concat[5.5.1050~1-0fb50]:main():nnet-concat.cc:53) Reading exp/tri4b_dnn_dae/final.feature_transform LOG (nnet-concat[5.5.1050~1-0fb50]:main():nnet-concat.cc:65) Concatenating exp/tri4b_dnn_dae/final.nnet LOG (nnet-concat[5.5.1050~1-0fb50]:main():nnet-concat.cc:65) Concatenating exp/tri4b_dnn_mpe/final.feature_transform LOG (nnet-concat[5.5.1050~1-0fb50]:main():nnet-concat.cc:82) Written model to exp/tri4b_dnn_dae/dae.nnet DAE: switch bach to per-speaker CMVN mode steps/nnet/decode.sh --cmd run.pl --mem 4G --nj 8 --srcdir exp/tri4b_dnn_mpe exp/tri4b/graph_word data/dae/test/0db/car exp/tri4b_dnn_mpe/decode_word_0db/car steps/nnet/decode.sh --cmd run.pl --mem 4G --nj 8 --srcdir exp/tri4b_dnn_mpe exp/tri4b/graph_word data/dae/test/0db/white exp/tri4b_dnn_mpe/decode_word_0db/white steps/nnet/decode.sh --cmd run.pl --mem 4G --nj 8 --srcdir exp/tri4b_dnn_mpe exp/tri4b/graph_word data/dae/test/0db/cafe exp/tri4b_dnn_mpe/decode_word_0db/cafe steps/nnet/decode.sh: missing file exp/tri4b/graph_word/HCLG.fst steps/nnet/decode.sh: missing file exp/tri4b/graph_word/HCLG.fst steps/nnet/decode.sh: missing file exp/tri4b/graph_word/HCLG.fst
|